

Development of professional collaboration is an important component of surgical training. When considering the broad realm of patient care, both within and outside the operating room, the surgeon must understand and be able to use specific concepts and skills related to neurosciences and specialties including anatomy, neurology, pathology, pharmacology, physiology, radiation physiology, and radiology.

Integration of the neurosciences and associated specialties by the neurosurgery resident into all aspects of practice will enhance his or her ability to appropriately diagnose, organize a management plan, perform necessary surgical procedures, and care for the postoperative surgical patient in the short and long term. Neurosurgery residents learn neuroscience concepts and skills on all clinical rotations and in didactic settings. Knowledge and skills are assessed informally and on a daily basis by faculty and attending surgeons as well as formally. Since these neurosciences and associated specialties are part of a core curriculum related to each and every principal surgical area, they are grouped together and not repeated in separate surgical areas.

# Neurosciences: Neuroanatomy

# Developed by:

Steve Schneider, M.D. Stephen J. Eichert, D.O., FACOS

### **Resident Competencies**

- Osteopathic Principles and Practices
- Patient Care
- Medical Knowledge
- Practice-Based Learning and Improvement
- Interpersonal and Communication Skills
- Professionalism
- Systems-Based Practice

### Prerequisites

Prior to entering a neurological surgery residency, the resident should:

- Understand the organization and development of the nervous system
- Understand the anatomic structures, their connections and relationship to function within the nervous system

### Learning Outcomes

Upon completion of the neurosurgery residency, the resident will:

- Understand the anatomy that is pertinent to the diagnosis of diseases of the nervous system and the practice of neurological surgery
- Understand clinical syndromes as a correlate to neuroanatomy

| Phase I: Performance Indicators                                                                                                                                                                | Phase II: Performance Indicators                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Cognitive</b><br><u>Embryology</u><br>Analyze the embryological development of the brain,                                                                                                   | <b>Cognitive</b><br>Discuss the clinical presentation in anatomical terms of syndromes of the brain and its                               |
| cerebellum, brain stem, glial elements, spinal cord,<br>conus medullaris, cauda equina, sympathetic and<br>parasympathetic systems and the peripheral nervous                                  | coverings<br>Discuss the syndromes produced by mass                                                                                       |
| system                                                                                                                                                                                         | lesions affecting the cranial nerves                                                                                                      |
| Analyze the embryologic development of the skull,<br>craniovertebral junction, and spine<br><u>Histology</u>                                                                                   | Predict the expected effects of stroke or mass<br>lesion at different locations within the brain<br>stem and cerebellum                   |
| Describe and differentiate the types of neurons                                                                                                                                                | Predict the expected effects of destructive lesions in the basal ganglia and cerebellum                                                   |
| Understand the microanatomy of the neuron including<br>the cell body, dendritic process and axonal process                                                                                     | Predict the expected effects of ischemic or destructive lesions of the white matter tracts                                                |
| Diagram and describe the microanatomy of the synapse                                                                                                                                           | of the cerebellum                                                                                                                         |
| Identify the microglial elements and their microanatomy                                                                                                                                        | Predict the expected effect of destructive lesions of specific regions of the cerebral                                                    |
| Describe the anatomical basis for the blood brain barrier                                                                                                                                      | cortex                                                                                                                                    |
| <u>Vascular Anatomy</u><br>Diagram and describe the carotid and vertebral arteries<br>and their branches which provide blood supply to the<br>face, scalp, skull, meninges, brain, brain stem, | Recognize the clinical presentation of strokes<br>in the distribution of the supratentorial<br>cerebral blood vessels                     |
| cerebellum, and rostral spinal cord                                                                                                                                                            | Describe the relationship of the spinal nerves<br>to the vertebral level of exit                                                          |
| Describe the arterial blood supply to the spinal cord<br>including the spinal and radicular arteries and explain<br>the concept of watershed ischemia                                          | Diagram the structures comprising the boundaries of the spinal neural foramina                                                            |
| Identify the venous drainage of the central nervous system                                                                                                                                     | Recognize the clinical manifestation of injury<br>for each of the major peripheral nerves                                                 |
| Osseous Anatomy<br>Identify the bones and sutures of the skull                                                                                                                                 | Describe the anatomy and presentation of<br>common entrapment syndromes of peripheral<br>nerves                                           |
| Identify each named foramen of the skull and list its contents                                                                                                                                 | Describe the surgical exposure of common peripheral nerve entrapments                                                                     |
| Extracerebral Anatomy<br>Describe the anatomy of the meninges including the<br>dura mater, arachnoid mater, pia mater                                                                          | Recognize the clinical presentation and<br>neurological deficits associated with common<br>lesions of and injuries to the spinal cord and |
| Describe the anatomy of the dura including the falx cerebri and tentorium                                                                                                                      | nerve roots                                                                                                                               |

| Identify the layers of the scalp and discuss scalp innervation                                                                               |                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagram the cerebral ventricles                                                                                                              |                                                                                                                                                   |
| Describe the major arachnoid cisterns and the anatomy of the arachnoid villi                                                                 |                                                                                                                                                   |
| Analyze the anatomic correlates pertinent to the production, flow, and reabsorption of cerebrospinal fluid                                   |                                                                                                                                                   |
| Spinal Anatomy<br>Identify and describe the gross anatomy of the spine                                                                       |                                                                                                                                                   |
| Identify the muscles related to the skull and spine<br>including suboccipital, anterior cervical, and posterior<br>cervical                  |                                                                                                                                                   |
| Describe the gross anatomy of the neck                                                                                                       |                                                                                                                                                   |
| <u>Central Nervous System</u><br>Describe the anatomy of cerebrum, cerebellum,<br>olfactory pathways, hippocampal formation, and<br>amygdala |                                                                                                                                                   |
| Describe the anatomy of the corpus striatum                                                                                                  |                                                                                                                                                   |
| Describe the anatomy of the hypothalmus and pituitary                                                                                        |                                                                                                                                                   |
| Describe the anatomy of the diencephalons and mesencephalon                                                                                  |                                                                                                                                                   |
| Identify the location and connections of each cranial nerve nuclei                                                                           |                                                                                                                                                   |
| Trace the course of each cranial nerve from nucleus to end organ termination.                                                                |                                                                                                                                                   |
| Describe the external topography and landmarks of the fourth ventricle                                                                       | <b>Technical</b><br>Identify at the time of surgery structures                                                                                    |
| Describe the anatomy of the brain stem including pons<br>and medulla                                                                         | <ul> <li>visible in the lateral ventricles and understand<br/>the flow of cerebrospinal fluid (CSF) through:</li> <li>Foramen of Monro</li> </ul> |
| Describe the anatomy of the spinal cord                                                                                                      | <ul><li>Fornix</li><li>Caudate</li></ul>                                                                                                          |
| Autonomic Nervous System<br>Distinguish pre- and postganglionic neurons                                                                      | <ul><li>Thalamus</li><li>Choroidal fissure</li><li>Named veins</li></ul>                                                                          |
| Describe the sympathetic nervous system and the                                                                                              | <ul><li>Glomus of choroid plexus</li><li>Hippocampus</li></ul>                                                                                    |

| parasympathetic nervous system                                                        |                                                                        |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                       | Identify the parts of the vertebral column,                            |
| Identify the visceral afferent fibers                                                 | spinal cord, and nerve roots at the time of                            |
|                                                                                       | surgery                                                                |
| Describe the structure of the autonomic ganglia and the                               | Identify at the time of synapsys                                       |
| central autonomic pathways                                                            | Identify at the time of surgery:                                       |
| Peripheral Nervous System                                                             | Occipital artery     Superficial temporal artery                       |
| Differentiate between segmental and peripheral                                        | <ul><li>Superficial temporal artery</li><li>Frontalis muscle</li></ul> |
| innervation                                                                           | <ul><li>Frontalis muscle</li><li>Pterion</li></ul>                     |
|                                                                                       | <ul><li>Inion</li></ul>                                                |
| Diagram the anatomy of the spinal nerve root                                          | Asterion                                                               |
|                                                                                       | Coronal suture                                                         |
| Diagram and discuss the cervical, brachial, and                                       | <ul> <li>Sagittal suture</li> </ul>                                    |
| lumbosacral plexi                                                                     | <ul> <li>Middle meningeal artery</li> </ul>                            |
|                                                                                       | <ul> <li>Sagittal sinus</li> </ul>                                     |
| Outline the anatomy of the major peripheral nerves of                                 | <ul> <li>Transverse sinus</li> </ul>                                   |
| the upper and lower extremities                                                       | <ul><li>Foramen rotundum</li></ul>                                     |
| Describe the microspetency of the peripheral nerves                                   | <ul><li>Foramen ovale</li></ul>                                        |
| Describe the microanatomy of the peripheral nerves                                    | <ul><li>Foramen spinosum</li></ul>                                     |
| Compare myelinated and unmyelinated nerves                                            | <ul> <li>Superior orbital fissure</li> </ul>                           |
| compare inyennated and uninyennated herves                                            | <ul><li>Jugular foramen</li></ul>                                      |
| Describe the anatomy of the Schwann cell                                              | <ul> <li>Internal auditory canal</li> </ul>                            |
|                                                                                       | <ul> <li>Superior sagittal sinus</li> </ul>                            |
| Identify the peripheral afferent receptors and describe                               | <ul> <li>Sigmoid sinus</li> </ul>                                      |
| the anatomy of each                                                                   | • Incisura                                                             |
|                                                                                       | Each cranial nerve                                                     |
| Segregate peripheral neurons by size and explain the                                  | • Each named cerebral artery and vein                                  |
| rationale for such a classification scheme                                            | • Components of the brain stem                                         |
| March                                                                                 | • Named structures on the floor of the                                 |
| Muscle                                                                                | fourth ventricle                                                       |
| Explain the concept of the motor unit and describe the anatomy of the motor end plate | Foramina of Magendie and Luschka                                       |
|                                                                                       | Cerebral peduncles                                                     |
| Compare the microscopic anatomy of striated and                                       | Components of the cerebellum                                           |
| smooth muscle                                                                         | Cerebellar tonsils                                                     |
|                                                                                       | Brachium cerebelli                                                     |
| Describe the subcellular components of muscle                                         | Vermis                                                                 |
| _                                                                                     | Major supratentorial gyri                                              |
|                                                                                       | Supratentorial lobes                                                   |
|                                                                                       | Sylvian fissure                                                        |
|                                                                                       | Central sulcus                                                         |

Adapted from the American Association of Neurological Surgeons/Congress of Neurological Surgeons Neurosurgery Residency Curriculum Guide

Learning Experiences (list titles of teaching conferences, labs, procedure workshops, etc.)

### **Resident Assessment**

Written exams and slide/photograph identifications Quarterly evaluations, case review, focused chart review, lecture attendance Oral boards Written boards Annual In-service exams

### Resources

## Neurosciences: Neurology

### **Developed by:**

Stephen E. Eichert, D.O., FACOS; Dan Miulli, D.O., FACOS; Javed Siddiqi, HBSc, M.D., Ph.D., FRCSC

### **Resident Competencies**

- Osteopathic Principles and Practices
- Patient Care
- Medical Knowledge
- Practice-Based Learning and Improvement
- Interpersonal and Communication Skills
- Professionalism
- Systems-Based Practice

### Prerequisites

Prior to entering a neurological surgery residency, the resident should:

- Understand localization within the central and peripheral nervous systems
- Perform a basic neurological exam
- Recognize the major categories of neurology disease: infections, neoplastic, traumatic, degenerative and developmental
- Recognize major congenital malfunctions and the cause of hydrocephalous
- Recognize the major categories of headaches and epilepsy
- Understand the causes of stupor and coma
- Distinguish metabolic from structural presentation of coma

### **Learning Outcomes**

Upon completion of the neurosurgery residency the resident will:

- Understand the anatomy, physiology and pathology of the nervous system
- Describe the etiology and pathogenesis of cerebrovascular disease
- Integrate the neurological examination with laboratory, physiologic and radiographic studies to precisely locate lesions within the nervous system
- Form specific treatment plans and accurate prognoses based on localization, pathophysiology and naturalization of a neurological disorder occurring in any specific patient

| Phase I: Performance Indicators                           | Phase II: Performance Indicators                  |
|-----------------------------------------------------------|---------------------------------------------------|
| Cognitive                                                 | Cognitive                                         |
| Stroke                                                    | Oncology                                          |
| Understand and recognize the major causes of stroke       | Recognize the clinical presentation of patients   |
|                                                           | with mass lesions including intraaxial            |
| Compare the differences between hemorrhage                | supratentorial, extraaxial supratentorial,        |
| infraction and primary hemorrhage                         | intraaxial intracerebellar, extraaxial            |
|                                                           | intratentorial, intraaxial brain stem             |
| Identify the appropriate diagnostic studies to support    |                                                   |
| the clinical impression of stroke                         | Develop a differential diagnosis based on         |
| L                                                         | location of the lesion, patient age, and          |
| Select the appropriate therapeutic maneuvers for          | associated medical condition                      |
| effecting treatment of stroke in individual patients and  |                                                   |
| categories of patients                                    | Explain the role of corticosteroids in patients   |
| 8                                                         | with cerebral and spinal cord masses              |
| Educate patients and families about the risks of          | corona and opinal cord masses                     |
| recurrences and appropriate prophylactic measures         | Define the cerebrocutaneous syndrome and          |
| recurrences and appropriate propriyation measures         | their neoplastic accompaniments:                  |
| Localize affected area based on clinical presentation     | <ul> <li>Neurofibromatosis I and II</li> </ul>    |
| Localize arrected and based on enhibit presentation       | <ul> <li>Tuberous sclerosis</li> </ul>            |
| Describe the etiology, pathogenesis, clinical             |                                                   |
| presentation, radiologic evaluation, clinical evaluation, | Von Hippel-Lindau Syndrome                        |
| and management of the following:                          | Sturge-Weber Syndrome                             |
| <ul> <li>Transient ischemic attacks</li> </ul>            |                                                   |
|                                                           | Explain the major sources of metastatic           |
| Cerebral infarction                                       | carcinoma to the brain                            |
| Cerebral and cerebellar hemorrhage                        |                                                   |
| Subarachnoid hemorrhage                                   | Identify and describe the clinical                |
| Venous infarction                                         | manifestations and laboratory investigations of   |
|                                                           | the remote effects of cancer:                     |
| Identify the primary causes of stroke in the pediatric    | Eaton-Lambert Syndrome                            |
| population                                                | Cerebellar degeneration                           |
|                                                           | Polyneuropathies                                  |
| Meningitis and Encephalitis                               | Limbic encephalitis                               |
| Recognize bacterial and viral meningitis                  | Marantic endocarditis                             |
|                                                           |                                                   |
| Order appropriate laboratory and diagnostic studies in    | Acquired Immune Deficiency Syndrome               |
| patients with meningit is                                 | (AIDS)                                            |
|                                                           | Understand the manifestations of AIDS             |
| Appropriately use antibiotics in meningitis               | encephalopathy                                    |
|                                                           |                                                   |
| Describe the clinical manifestations of viral             | Establish the differential diagnosis and          |
| encephalitis                                              | understand the respective radiologic              |
|                                                           | presentation of mass lesions in patients with     |
| Define the major viral causes of encephalitis             | AIDS                                              |
|                                                           | ~                                                 |
| Describe the major magnetic resonance imaging (MRI)       | Describe the pathology and the clinical picture   |
| and computerized tomography (CT) findings in              | of AIDS myelopathy                                |
| encephalitis                                              | · · · · · · · · · · · · · · · · · · ·             |
|                                                           | Identify the clinical indicators for nerve biopsy |
|                                                           | recently the cument indicators for herve blopsy   |

| Compare cerebral contusion and delayed cerebral<br>parenchymal hemorrhage based on their clinical and<br>radiographic presentations; plan treatment for both<br>Define the anatomic considerations, the clinical and<br>radiographic appearance, and treatment for chronic<br>subdural hematoma<br>Identify the cause of subdural hematoma and rate of<br>reoccurrence<br>Explain Kernohan's Notch<br>Counsel families of patients about treatment and<br>prognoses in acute head injury<br><u>Spine Trauma</u><br>Use a directed neurologic examination for patients with<br>acute and subacute spine trauma<br>Compare acute injury clinical presentations including<br>spinal shock, Brown-Sequard Syndrome, central cord<br>syndrome, and cauda equina syndrome<br>Identify the spinal level of injury based on physical<br>examination<br>Distinguish between acute polyneuropathyies and<br>myelopathy<br><u>Diagnostic Testing and Monitoring</u><br>Understand the indications, pathologic changes,<br>how test is performed, diagnostic use of the<br>following:<br>• Electroencephalography<br>• sensory evoked potential testing (SEP)<br>• visual evoked potential testing (MEP)<br>• electromyographic testing (EMG)<br>• nerve conduction velocity testing (NCV)<br><b>Technical</b> | Define status epilepticus, its causes,<br>pathophysiology, clinical presentation,<br>diagnostic studies and treatment<br><u>Delirium and Dementia</u><br>Define delirium and dementia. List the<br>differential diagnoses for each<br>Describe coma and altered states of<br>consciousness and measure patient status using<br>the Glasgow Coma Scale<br>Evaluate a patient with syncope |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Perform lumbar puncture and differentiate among viral<br>meningitis, bacterial meningitis, and encephalitis based<br>on the result of the lumbar puncture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |

Learning Experiences (list titles of teaching conferences, labs, procedure workshops, etc.)

### **Resident Assessment**

Written exams and slide/photograph identifications Quarterly evaluations, case review, focused chart review, lecture attendance Oral boards Written boards Annual In-service exams

#### Resources

## Neurosciences: Neuropathology

### **Developed by**:

Stephen E. Eichert, D.O., FACOS; Dan Miulli, D.O., FACOS; Javed Siddiqi, HBSc, M.D., Ph.D., FRCSC

### **Resident Competencies**

- Osteopathic Principles and Practices
- Patient Care
- Medical Knowledge
- Practice-Based Learning and Improvement
- Interpersonal and Communication Skills
- Professionalism
- Systems-Based Practice

### Prerequisites

Prior to entering neurological surgery residency, the resident should:

- Recognize the correlation between neurological structure and function
- Analyze the variability of the effects on neurological function related to anatomic localization of the disease
- Understand how the nervous system responds to insult based on:
  - o fixed size of space enclosing the central nervous system
  - o limited mobility of the nervous system within that space
  - o immobility of the dura and dural folds
  - o uniformity of structural change and progression of most serious (biologic behavior)
- Recognize the major cytological components of the central and peripheral nervous system
- Analyze the blood brain barrier, its components and areas where it is defective
- Compare cytotoxic and cacogenic edema
- Understand the Monro-Kellie Doctrine

### Learning Outcomes

Upon completion of a neurological surgery residency, the resident will:

- Compare relevant chromatic, chemical and immune-peroxides for specific tissues and disease processes
- Correlate gross and histologic specimens to the pathologic process
- Correlate the chemical laboratory and radiologic data with the underlying pathologic process in individual patients
- Explain the pathophysiology as it relates to the specific neurological clinical situations

| Phase I: Performance Indicators                                                                                                                                                                                                                                                                                            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>Cognitive</b><br>Understand CSF physiology as it relates to communicating hydrocephalus, non-communicating hydrocephalus, benign intracranial hypertension, and cerebral herniation                                                                                                                                     |  |  |
| Compare intracranial pressure volume relationships in the context of trauma, intracerebral and subarachnoid hemorrhage, cerebral neoplasm, and cerebral herniation                                                                                                                                                         |  |  |
| Explain cerebral blood flow (CBF) in trauma, cerebral herniation, cerebral hemorrhage, and ischemic cerebral vascular disease & subarachnoid hemorrhage                                                                                                                                                                    |  |  |
| Compare the effects of ischemia, hypoxemia, trauma, cerebral hemorrhage and tumors on cerebral autoregulation                                                                                                                                                                                                              |  |  |
| Describe the effect of seizures on cerebral blood flow and cerebral autoregulation                                                                                                                                                                                                                                         |  |  |
| Explain fluid and electrolyte disorders as they relate to central nervous system disorders including syndrome of inappropriate antidiuretic hormone secretion (SIADH), diabetes insidious, and cerebral salt wasting                                                                                                       |  |  |
| Describe the major developmental anomalies, their recognition, origin and treatment• Chairi Malformations• Spinal Dysraphisms• Porencephaly• Anencephaly• Agenesis of Corpus Callosum• Microcephaly• Arachnoids Cysts• Klippel – Feil Syndrome• Heterotopias• Dandy Walker Syndrome• Hydrocephalus• Vein of Galen Aneurysm |  |  |
| Explain the major theories of development, the clinical presentation and the path physiology of cerebral aneurysms, capillary telangiectasias, artero-venous malfunctions, cavernous hemangiomas, venous angiomas                                                                                                          |  |  |
| Describe the major theories and pathophysiology of cerebral vasospasm in relation to subarachnoid hemorrhage                                                                                                                                                                                                               |  |  |
| Differentiate cytotoxic edema, vasogenic edema, interstitial edema and congestive brain swelling                                                                                                                                                                                                                           |  |  |
| Describe the etiology, pathophysiology and clinical presentations of ischemic cerebral infraction, ischemic cerebral infraction and secondary hemorrhage, primary intracerebral hemorrhage and venous occlusion                                                                                                            |  |  |
| Compare the pathophysiology of ischemic and hypoxic brain injury                                                                                                                                                                                                                                                           |  |  |
| Differentiate the pathophysiology of indirect brain injuries including cerebral concussion, diffuse axonal injury, and acute subdural hemtoma                                                                                                                                                                              |  |  |

Differentiate secondary brain injuries including ischemic brain injury, cerebral herniation, contusional hemorrhage, posttraumatic swelling, and posttraumatic edema

Analyze the pathophysiology, the clinical presentations and the etiology of reoccurrence in the chronic subdural hematoma

Understand the pathophysiology of penetrating brain injury

Compare the pathophysiology and radiologic correlates of primary and secondary spinal cord injury

Differentiate the clinical presentation of and pathologic progression of spinal shock, Brown-Séquard syndrome, anterior spinal syndrome, central cord syndrome, Guillain-Barré syndrome, and Tabes Dorsalis

Understand the cell rest and field theories in the development of tumors of the nervous system

Explain the nature of local invasion of glial neoplasm and the structures of Scherer

Define the peaks of occurrence, locations, clinical presentations, histologic, cytologic and where relevant immunologic characteristics of primary glial neoplasm's including:

- Astrocytoma
- Oligodendroglioma
- Ependymoma
- Choroids Plexus Papillone
- Myxopapillary Eprndymomas

- Primitive Neuroectodermal Tumors (PNET)
- Germinomas
- Ganglioglioma
- Pleomorphic Xanthoastrocytoma
- Hemangioblastoma

Define the peaks of occurrence, locations, clinical presentation, development, histologic and cytologic characteristics of:

- Meningiomas
- Hemangiopericytomas
- Colloid Cysts
- Rathke cleft cysts
- Pineal cysts
- Craniopharyngioma

- Dermoids
- Epidermoids
- Chordomas
- Gliosarcomas
- Lymphomas

Differentiate the accepted grading systems for glial neoplasms based on rationale: World Health Orgniazation (WHO,) Kernahan, Danmas–Duport, Buerger

Compare of the pathophysiology and clinical correlates of carcinoma that is metastatic to the nervous system by type: parenchymal, leptomeningeal, epidural

Explain the pathophysiology of paraneoplastic nervous system diseases

Describe the laboratory, clinical, histologic, cytologic and immunologic abnormalities found in association with pituitary adenomas

Describe the laboratory studies indicative of the cause of hormone-secreting pituitary adenomas including prolactinomas, Cushings syndrome, and acromegaly

Describe the clinical presentation, radiographic picture, genetics and pathologic manifestations of the neurocutaneorus syndromes:

- Tuberous Sekrosis
- Neurofibromatosis I
- Neurofibromatosis II

- Von Hippe–Lindau's Angiomatosis
- Encephalo facial Angiomatosis
- Ataxia–Telauogiectasia

Explain the clinical presentation, laboratory abnormalities, pathophysiology and possible sequellae of:

Bacterial meningitis
 Viral meningitis
 Sporadic and Epidemic Encephalitis
 Herpes Encephalitis

- Tuberculosis (TB) meningitis
- Fungal meningitis

- Poliomyelitis
- Crentzfeld–Jacob disease

Differentiate the types of cerebral abscesses (bacterial, fungal, tuberculosis, sarcoid, parasitic) based on the clinical presentation, pathophysiology, radiographic presentation and give the rationale for treatment

Discuss the clinical presentation and the pathologic correlates of AIDS as the well as associated infections and neoplastic entitles as the affect the nervous system

Compare the pathophysiology and clinical presentation of demyelinating disorders of the nervous system such as multiple sclerosis and central pontine myelinolysis

Describe the clinical and pathologic abnormalities in vitamin deficiency diseases of the central nervous system including subacute combined degeneration, Wernicke's encephalopathy, and Korsakoff's psychosis

Describe the clinical presentation and the pathologic substrate of the major degenerative central nervous system disorders:

- Alzheimer's Disease
- Vascular disease
- Parkinson's Disease
- Wilson's Disease
- Progressive Supranuclear Palsy
- Pick's Disease

- Huntington's Disease
- Motor Neuron Disease
- Post Polio Syndrome
- Spinocerebellar desecrations
- Striatonigral Degeneration

Describe the use of electron microscopy, and Nuclear Magnetic Resonance (NMR) spectroscopy as it pertains to neurological disease

Perform basic preparation, frozen sectioning and microscopic identification of nervous tissue.

Learning Experiences (list titles of teaching conferences, labs, procedure workshops, etc.)

**Resident Assessment** Written exams and slide/photograph identifications Quarterly evaluations, case review, focused chart review, lecture attendance Oral boards Written boards Annual In-service exams

### Resources

Lecture and slide material from Loyola University Medical center, Department of Pathology, Section of Neuropathology

Fuller G and Goodman C. Practical Review of Neuropathology. Lippincott Williams & Wilkins, 2001.

## Neurosciences: Neuropharmacology

### **Developed by:**

Javed Siddiqi, HBSc, M.D., Ph.D., FRCSC; Dan Miulli, D.O., FACOS; Keith Kattner, D.O., FACOS

### **Resident Competencies**

- Osteopathic Principles and Practices
- Patient Care
- Medical Knowledge
- Practice-Based Learning and Improvement
- Interpersonal and Communication Skills
- Professionalism
- Systems-Based Practice

### Prerequisites

Prior to entering a neurological surgery residency, the resident should:

• Understand basic pharmacology, physiology and neurology

### **Learning Outcomes**

Upon completion of the neurological surgery residency, the resident will:

• Understand neuropharmacology that is pertinent to the treatment of neurological disorders and diseases which affect the nervous system

### Phase I: Performance Indicators

### Cognitive

Describe basic cellular neurotransmission including;

- The synapse
- Membrane potentials
- Ion pumps
- Ion channels
- Transmitter secretion
- Transmitter identification

Classify and identify receptors and receptor pharmacodynamics including:

- Receptor classification
- Receptor identification
- Dose response curves
- Agonists and antagonists
- Receptor modulation

Classify the neurotransmitter acetylcholine including:

- Cholinergic receptor classification
- Functional aspects of cholinergic receptors
- Synthesis, storage, and release of acetylcholine

Analyze the catecholamine neurotransmitters (norepinephrine and dopamine) including:

- Biosynthesis of catecholamines
- Storage and release of catecholamines

- Anatomy of catecholamine receptors
- Adrenergic receptors
- Dopaminergic receptors

Analyze the neurotransmitter serotonin including:

- Anatomy of serotonin receptors
- Biosynthesis, storage, and release of serotonin
- Sub-types of serotonin receptors

Analyze the neurotransmitter glutamate including:

- Biosynthesis, storage, and release of glutamate
- Ionotropic glutamate receptors including N-methyl-D-aspartate (NMDA) and non-NMDA receptors and subunits
- Metabotropic glutamate receptors: Groups I III
- Role in neurological disorders

Analyze the neurotransmitters gamma-aminobutyric acid (GABA) and glycine including:

- Synthesis, uptake, and release
- Physiology and pharmacology
- Clinically relevant agonists and antagonists of GABA and glycine receptors

Analyze the peptide neurotransmitters

Evaluate the pharmacology of each of the drugs used to treat neurological disorders

Prescribe medication appropriately for nervous system diseases

Learning Experiences (list titles of teaching conferences, labs, procedure workshops, etc.)

Resident Assessment Written exams and slide/photograph identifications Quarterly evaluations, case review, focused chart review, lecture attendance Oral boards Written boards Annual In-service exams

Resources

## Neurosciences: Neurophysiology

#### **Developed by:**

Javed Siddiqi, HBSc, M.D., Ph.D., FRCSC; Dan Miulli, D.O., FACOS; Keith Kattner, D.O., FACOS

### **Resident Competencies**

- Osteopathic Principles and Practices
- Patient Care
- Medical Knowledge
- Practice-Based Learning and Improvement
- Interpersonal and Communication Skills
- Professionalism
- Systems-Based Practice

### Prerequisites

Prior to entering a neurological surgery residency, the resident should:

- Understand basic neuro-physiology including nerve cell and nervous system transmission, homeostasis and repair
- Understand nervous system histology
- Understand the anatomy of the nervous system on a cellular and macroscopic level
- Describe the basic biology of the nerves including:
  - Synthesis and movement of proteins in the nerve
  - o Membrane potential and membrane properties
  - Ion channels
  - o Generation and conduction of an action potential

### Learning Outcomes

Upon completion of the neurological surgery residency, the resident will:

- Understand neurophysiology and how it relates to neurological diseases
- Analyze the physiological mechanisms in the treatment of functional disorders

### **Phase I: Performance Indicators**

### Cognitive

Describe synaptic transmissions including:

- Types of synaptic transmission
- Transmitter release and uptake
- Nerve-muscle transmission
- Chemical messengers
- Direct gated receptors
- Second messenger linked receptors

Describe the physiology of the sensory systems including:

- Sensory receptor physiology
- Anatomy of somatic sensory system
- Coding of modality specific sensory information
- Pain and analgesia

- Cortical integration of sensory perception
- Visual system
  - Processing of information in the retina
  - Processing of vision in the central visual pathways
  - Columnar units of visual cortex
  - Processing in the geniculate nucleus
  - Visual perception of motor and form
- Auditory system including the processing of hearing in the cochlea and the central auditory pathways
- Olfaction and taste

Describe the physiology of the motor system including:

- Mechanisms of muscle contraction
- Muscle receptors, spinal reflexes
- Spinal reflexes concerned with position
- Brain stem reflexes controlling motion
- Vestibular nuclei control of movement and posture
- Red nucleus control of movement
- Cortical control of movement
- Cerebellar control of movement
  - Regional and cellular organization of the cerebellum
  - Functional divisions of the cerebellum
  - The role of the cerebellum in planning movement
- Basal ganglia anatomy and neuro transmitters
- Thalamus

Compare the attributes of the autonomic nervous system including both the sympathetic and parasympathetic systems

Analyze the physiological basis of arousal and emotion, including:

- Noradrenergic systems
- Limbic system including the physiologic basis for emotion and memory
- Sleeping and sleep states
- Reticular activating system

Describe the higher cortical functions including:

- Anatomy of language
- Function of association cortex

Describe the physiological basis for cerebrospinal fluid production and re-absorption

Review the physiological control of the cerebral vasculature

Discuss the physiology of the hypothalmus and pituitary, particularly as related to endocrinology

Analyze the physiological dynamics of cerebral blood flow

Properly interpret tests of both global and regional blood flow:

- X-ray/CT scan method
- Thermal diffusion

- Laser and Transcranial Doppler
- Jugular bulb oximetry testing

**Learning Experiences** (list titles of teaching conferences, labs, procedure workshops, etc.) Review the basic physiological sciences through attendance at board review courses

Participate in laboratory research projects

Develop knowledge of physiological testing through a dedicated neurology rotation

Attend courses focused on intraoperative physiological monitoring

Resident Assessment Written exams and slide/photograph identifications Quarterly evaluations, case review, focused chart review, lecture attendance Oral boards Written boards Annual In-service exams

#### Resources

Intraoperative Monitoring: Basics and Performance Issues. American Society of Electroneurodiagnostic Technologists, 2001.

# Neurosciences:

# **Neuro-Radiation Physiology**

### **Developed by:**

Will Beringer D.O.; Keith Kattner D.O., FACOS, Javed Siddiqi, HBSc, M.D., Ph.D., FRCSC; Dan Miulli, DO, FACOS

### **Resident Competencies**

- Osteopathic Principles and Practices
- Patient Care
- Medical Knowledge
- Practice-Based Learning and Improvement
- Interpersonal and Communication Skills
- Professionalism
- Systems-Based Practice

### Prerequisites

### Prior to entering a neurological surgical residency, the resident should:

- Identify devices commonly used to provide radiotherapy and radiosurgery external beam / whole brain, linac, gamma knife, cyberknife, intensity-modulated radiation therapy (IMRT)
- Understand use of ionizing radiation to induce potentially lethal mutations in cancerous and normal tissues
- Compare the characteristics of cancer cells and normal tissues with regards to deoxyribose nucleic acid (DNA) repairing capabilities following radiation injury

### Learning Outcomes

Upon completion of the neurological surgical residency, the resident will:

- Analyze the indications, risks and benefits of radiotherapy and radiosurgery in treating neurosurgical lesions
- Analyze current literature and apply the information to patient care
- Plan treatment doses and treatment schedules with radiotherapy or radiosurgery
- Collaborate on the radiobiological treatment of neurosurgical patients with radiation oncologists, radiation physicists and oncologists
- Communicate with patients and their families in a knowledgeable, compassionate manner regarding the risks, benefits and goals of radiotherapeutics in the treatment of neurosurgical lesions

| Phase I: Performance Indicators                                                                                                                                               | Phase II: Performance Indicators                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cognitive                                                                                                                                                                     | Cognitive                                                                                                                                                                                                                                                                                                                                                            |
| Differentiate treatment options for meningiomas,<br>gliomas, metastases, spinal cord tumors,<br>arteriovenous malformations (AVM), acoustic<br>neuromas, trigeminal neuralgia | Analyze late responding and early responding<br>tissues & lesions and relate to different alpha / beta<br>ratios                                                                                                                                                                                                                                                     |
| Differentiate external beam radiotherapy from<br>stereotactic radiosurgery<br>Describe differences among linear accelerator<br>system (LINAC), GammaKnife, Cyberknife and     | Differentiate between intensity-modulated radiation<br>therapy (IMRT) and Cyberknife<br>Assess the indications for use of whole brain<br>radiotherapy in the management of brain<br>metastases                                                                                                                                                                       |
| intensity-modulated radiation therapy (IMRT) devices                                                                                                                          | Assess the indications for using hypofractionation                                                                                                                                                                                                                                                                                                                   |
| Describe photon beam therapy                                                                                                                                                  | Compare tissues that respond to single fraction radiosurgery versus hypofractionation                                                                                                                                                                                                                                                                                |
| Describe the concept of brachytherapy<br>Explain why children are more susceptible to<br>radiation injury than adults                                                         | Describe the onset, clinical manifestations and risks for developing radionecrosis                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                               | Collaborate on the management of post radiation-<br>related edema                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                               | Understand the effect of lesion size on the choice<br>of IMRT, single fraction radiosurgery and multi<br>staging radiosurgery                                                                                                                                                                                                                                        |
|                                                                                                                                                                               | <ul> <li>Describe common radiotherapeutic strategies for:</li> <li>meningiomas of the convexity, cavernous sinus, dural sinuses</li> <li>metastases to the brain and spine</li> <li>gliomas – supratentorial and brainstem</li> <li>trigeminal neuralgia</li> <li>pituitary adenomas</li> <li>acoustic neuromas</li> <li>arteriovenous malformation (AVM)</li> </ul> |
|                                                                                                                                                                               | Differentiate radionecrosis from recurrent tumor on<br>magnetic resonance imaging (MRI), positron<br>emission tomography (PET), and single-photon<br>emission computerized tomography (SPECT)<br>studies                                                                                                                                                             |

**Learning Experiences** (list titles of teaching conferences, labs, procedure workshops, etc.) Interact with radiation oncologists, oncologists and neurosurgeons in an interdisciplinary approach to treat patients with complex neuro-oncologic diseases.

Attend national conferences where the indications and various approaches to use of radiotherapeutics are discussed.

Plan and treat under guidance of radiation oncologists, radiation physicists and neurosurgeons the delivery of radiosurgery or radiotherapy.

#### **Resident Assessment** Oral boards

Written boards

Annual in-service exams

#### Resources

Local / regional linac, IMRT, Cyberknife, Gamma Knife facilities and the staff who manage and use these devices

Hall EJ, Brenner DJ. The radiobiology of radiosurgery: rationale for different treatment regimens for AVMs and malignancies. Int. J. Radiat. Oncol. Biol. Phys. 1993: 25: 381-385.

Mehta MP. The physical, biologic, and clinical basis of radiosurgery. *in: Current problems in cancer*. 5<sup>th</sup> edition, Vol. XIX, 1995.

### Neurosciences: Neuroradiology

### **Developed by:**

Ajeet Gordhan, M.D.; Keith Kattner, D.O., FACOS; Javed Siddiqi, HBSc, M.D., Ph.D., FRCSC; Dan Miulli D.O., FACOS

### **Resident Competencies**

- Osteopathic Principles and Practices
- Patient Care
- Medical Knowledge
- Practice-Based Learning and Improvement
- Interpersonal and Communication Skills
- Professionalism
- Systems-Based Practice

### Prerequisites

Prior to entering a neurological surgical residency, the resident should:

- Relate neurological anatomy to imaging studies
- Understand the basic physics of magnetic imaging, computed tomography, and plain films
- Know the "gold standard" imaging for various neurological diseases

### **Learning Outcomes**

Upon completion of the neurological surgery residency, the resident will:

- Recognize the appropriate imaging based on functional neuroanatomy findings
- Interpret magnetic resonance imaging (MRI), computed tomography (CT), and routine x-rays of the brain and spinal column
- Determine the appropriate imaging to best diagnose neurological diseases
- Develop a treatment strategy based upon imaging findings and correlate imaging to surgical techniques
- Utilize endovascular techniques in treating neurovascular disorders

| Phase I: Performance Indicators                                                               | Phase II: Performance Indicators                      |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Cognitive                                                                                     | Cognitive                                             |
| Identify normal neuroanatomical structures on                                                 | Distinguish the findings of normal and abnormal       |
| magnetic resonance imaging, computer                                                          | neonatal cranial ultrasound                           |
| tomography, and x-rays                                                                        |                                                       |
|                                                                                               | Use of transcranial Doppler ultrasonography in the    |
| Evaluate the limitations, sensitivity, and specificity                                        | management of patients with subarachnoid              |
| and potential complications to intravenous contrast                                           | hemorrhage, trauma, and occlusive vascular            |
| agents and discuss their management                                                           | disease, brain death, and the significance of         |
|                                                                                               | velocity changes and Lindergaard ratio                |
| Plan the use of endovascular techniques to treat                                              |                                                       |
| various neurovascular diseases                                                                | Diagnose brain and spine tumors using MRI and         |
|                                                                                               | CT scan                                               |
| Diagnose traumatic pathology to the nervous                                                   |                                                       |
| system during trauma resuscitation by means of CT                                             | Use diffuse weighted imaging and perfusion            |
| scans and plain x-rays                                                                        | scanning to identify early ischemic stroke            |
| Describe the also for each 1 is 1 is in                                                       |                                                       |
| Describe the plan for endovascular techniques to                                              | Use MR spectroscopy and PET scan to distinguish       |
| treat various neurovascular diseases                                                          | brain tumors                                          |
| Diagnosa traumatic pathology to the paryous                                                   | Interpret MRI, CT angiography, and standard           |
| Diagnose traumatic pathology to the nervous system during trauma resuscitation by means of CT | angiography to diagnose aneurysms and                 |
| scans and plain x-rays                                                                        | malformations                                         |
| scans and plain x-rays                                                                        | manormations                                          |
| Describe precautions that should be taken when                                                | Diagnose vasospasm with transcranial Doppler          |
| performing radiographic evaluations                                                           | Diagnose vasospasni wiai danseraniai Doppier          |
|                                                                                               | Determine specific pituitary, brain, spine, and skull |
| Describe the use of myelogram in the treatment of                                             | base tumors based on characteristics in imaging       |
| spinal disease                                                                                |                                                       |
|                                                                                               | Discuss the indications and technique of              |
| Identify diseased neuroanatomical structures on                                               | discography, epidural steroids, diagnostic selective  |
| magnetic resonance imaging (MRI), computer                                                    | nerve root blocks, facet blocks                       |
| tomography, cerebral angiogram, SPECT, PET,                                                   |                                                       |
| spectroscopy, functional imaging and x-rays                                                   | Discuss the indications and technique for             |
|                                                                                               | percutaneous vertebroplasty                           |
| Describe the concepts of ultrasonography                                                      |                                                       |
|                                                                                               | Technical                                             |
| Identify the spine fractures on routine x-rays and                                            | Use image guidance to resect brain and pituitary      |
| CT scan                                                                                       | tumors                                                |
| Describe the finding of a second 1 1 1                                                        | Has impose muidement in all sing in the task of the   |
| Describe the findings of normal and abnormal                                                  | Use image guidance in placing instrumentation in      |
| carotid ultrasound                                                                            | the spine                                             |
| Distinguish the various stages of intracranial                                                | Assist in the treatment of neurovascular diseases     |
| hematomas on MRI and CT scan                                                                  | with endovascular techniques                          |
| nonatorinas on milli ana C1 scall                                                             | war endovaseatar teeningues                           |
|                                                                                               | Perform provocative discography to diagnose           |
|                                                                                               | discogenic disease                                    |
|                                                                                               | <i>8</i>                                              |
|                                                                                               | n                                                     |

Learning Experiences (list titles of teaching conferences, labs, procedure workshops, etc.)

### **Resident Assessment**

Written exams and slide/photograph identifications Quarterly evaluations, case review, focused chart review, lecture attendance Oral boards Written boards Annual In-service exams

### Resources

Osborn, AG, Maack, J. Diagnostic Neuroradiology. CV Mosby Publishers, 1994.